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Abstract

We present an automated framework for benchmarking numerical algorithms that solve partial differ-
ential equations under consistent and reproducible conditions using the parallel finite element software
M++. This framework integrates GitLab CI/CD, Google Benchmark, and the HoreKa supercomputing
system to enable continuous integration and benchmarking. By incorporating ongoing software develop-
ment, the framework supports improving performance and reliability, which are vital for various scientific
computing applications, including wave propagation, cardiovascular simulations, dislocation dynamics, and
uncertainty quantification. These applications motivate the two benchmarking examples presented in this
text. We further outline the benchmarking workflow as well as the use of a research database storing
comprehensive performance data, facilitating reproducibility for future studies.

1 Introduction

Advancements in computational science and engineering nowadays often depend on the sustainable and robust
development of open-source software. It has become a major carrier of knowledge and scientific methodologies,
playing a key role in understanding physical, biological, technical, or economical phenomena. As complexity
increases in the modeling of such phenomena, the supporting software systems must also grow in complexity,
creating a multi-target optimization problem where usability, flexibility, performance, reliability, and maintain-
ability must be balanced. Consequently, careful software engineering, supported by performance data collection
and automated testing, has become a crucial part of the development process.

Here, we present our approach to this engineering task: an automated benchmarking system within the
release cycle for M++, a high-performance computing (HPC) finite element method (FEM) software [8],
developed over two decades by numerous researchers based on the initial works [26, 27]. Today, M++ is
applied across a wide range of scientific fields, such as geoscience, where it is used for full waveform inversion
in seismic imaging [10, 15, 22] and for simulating gas dynamics in carbon capturing [21]. It is also employed
in material science to model nonlinear solid mechanics [9] and dislocation dynamics [23, 24, 25], as well as in
life science to simulate cardiovascular processes [17, 18, 19].

M+-+ implements a wide range of numerical methods, e.g. standard Lagrange FEM, discontinuous Galerkin
(DG) and Raviart-Thomas discretizations as well as a Message Passing Interface (MPI) based parallel linear
algebra providing several preconditioners and Krylov subspace solvers [8]. Further, more recent features include
implicit space-time discretizations for wave [11, 13, 14] and transport [28, 12] equations, interval arithmetic
methods for computer-assisted existence proofs [31], and efficient time integration schemes combined with
DG methods [20] for simulating time-dependent wave problems. The software also provides methodologies
for large-scale uncertainty quantification (UQ), such as multilevel Monte Carlo, stochastic collocation and
stochastic gradient descent methods [4, 5, 6, 7], to cope with the inherent uncertainties in the physical models
and to impose an optimal control to the aforementioned applications.
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Supporting such a wide range of applications and algorithms results in different requirements on the software
architecture and the development process. It raises the questions on, when, how and where performance
improvements should be considered and which new features might be pursued to further expand the application
and decrease the runtime of the software. The discussion in [1] and the development process of Ginkgo [2]
and OpenCarp [3] serve as inspiration to address these questions by including benchmarking and automated
performance evaluation to the continuous integration/continuous deployment (Cl/CD) pipeline of M++. As
a result, we collect comprehensive data to make informed decisions on how to proceed in the development
process, while ensuring that already achieved results are maintained or even improved.

In this text, we describe the details of this benchmarking approach, its integration within the ClI/CD
pipeline, and the HoreKa supercomputing system to enable fair comparisons using Google Benchmark as the
evaluation tool. We present two benchmarking examples, each solving a PDE to outline the simplicity of the
new set-up for the software.

2 Methodology

Researchers at different universities develop M++, e.g. at the Karlsruhe Institute of Technology (KIT) or
Heidelberg University, all with different research projects and different requirements to the software. To
streamline the development and to be able to always move forward towards a common, new and improved
version of the software, we work within release cycles as described in [16]. We refer to Figure 1 at hand of
which we explain the procedure and the involved technologies used to create a new version of the software.

The starting point for a new software release (left side of Figure 1) typically involves programming a
new algorithm, designing a computational model, or enhancing existing code. Researchers with access to
the Git repository’ can make changes, which are automatically built by the Gitlab CI pipeline with various
configurations within Docker containers. These containers run on a Kubernetes cluster at the Department of
Mathematics at KIT, executing a rigorous and large set of tests to verify the correctness of the code (cf. top left
of Figure 1). Typical tests check for consistency of the implementation based on mathematical theory, execute
convergence experiments with respect to a certain discretization parameter, but also verify the integration of
the core M++ library within projects depending upon it.

Release candidates of M++ which have passed the build and verification stage can be deployed in a
next step on the HoreKa supercomputing system (cf. top right of Figure 1). Here, the pipeline executes HPC-
experiments and benchmarks parallelized with Open MPI, typically in the range of 64 to 16384 processing units,
to create the simulation data of interest in the form of HDF52 or VTU files, but also to collect performance and
configuration records in JSON files. All benchmark data is collected within the Google benchmark framework
and archived.

Subsequently, the data collected within the benchmarking stage is analyzed and post-processed via Python
tools (cf. bottom right of Figure 1). This involves an automated comparison with previous release data, and
preparation for a final publication with a persistent identifier via the RADAR? service. (cf. bottom left of
Figure 1). With this final publication, new benchmarking results are available, serving as the reference for
future developments and a new release cycle.

At the heart of this cycle is Gitlab ClI/CD as the automation tool and the driver of this procedure. It takes
over the configuration and execution of the aforementioned workflow by defining the utilized infrastructure and
stages in YML files. As a result, all components are easy to maintain, replace or extend simply by changing
the Gitlab CI/CD configuration. Under this development workflow, we currently create between three and five
new releases every year depending on the implemented features.

With over 30 releases ([30] as the latest), each developed with increasing levels of scrutiny, this workflow has
driven major improvements in usability, reliability and ensuring reproducibility of results, which is crucial for the
scientific method. To highlight the continuous advancements in quality control, we present two benchmarking
examples in the following section.

Ihttps://gitlab.kit.edu/kit/mpp/mpp/
2availbale in upcoming release
3https://radar.products.fiz-karlsruhe.de/en
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Figure 1: Release cycle of M4+ with automated testing, benchmarking and performance data collection.
Figure inspired by [16] and adapted from [4].

3 Examples

Defining a new benchmark is as simple as defining a new C++ function and registering it withing the Google
benchmark framework (cf. Listing 1). The following two subsections will introduce the definition of the
EllipticSubsurfaceDiffusion3D and the AcousticGaussHatAndRicker2D benchmark, which run among
many others on the HoreKa supercomputing system and serve here as examples. While research software quite
often favors specification over generalization, and therefore, tight integration of features over usability, we want
to emphasize with these examples the user accessibility for running PDE related applications.

BENCHMARK (EllipticSubsurfaceDiffusion3D); // Registers 3D diffusion problem as benchmar
BENCHMARK (AcousticGaussHatAndRicker2D); // Registers 2D acoustic problem as benchmark
// ... // Register further benchmarks

int main(int argc, char xxargv) {

MppTest mppTest = MppTestBuilder (argc, argv).WithPPM(); // MppTest is wrapper around Google benchmark
return mppTest.RUN_ALL_MPP_BENCHMARKS (argc, argv); // Runs all benchmarks

}

Listing 1: Mockup main file collecting several PDE solver benchmarks

3.1 An Elliptic Subsurface Diffusion Benchmark in 3D

Firstly, we consider a 3D elliptic subsurface diffusion problem on a unit cube D = (0,1)3. Given a spatially
dependent permeability x: D — R, homogeneous Dirichlet boundary conditions on the bottom face I'p =
{x € 9D: x5 = 0} and an inflow Neumann boundary condition on the top face I'y = {x € 9D: x5 = 1}, the
computational task is to find the pressure head u: D — R, such that

—div(k(x)Vu(x)) = 0 on D
n-Vu(x) = -1 on I'y
ulx) = 0 on Ip

The permeability function k takes either the value one or one-hundred at 16 distinct locations (cf. [29]
for definition). In M++ this problem can be implemented as a benchmark as shown in Listing 2. The




EllipticPDESolver class can be configured in various ways to solve the problem including different ansatz
spaces for the FEM and various preconditioned linear solvers. In its default configuration, the benchmark
uses a GMRES solver with an incomplete LU preconditioner for solving the linear system arising by using a
standard Lagrange FEM of degree one. The benchmarking functionality in Listing 2 solves the PDE several
times to collect statistically robust timing data by using the wrapper macros BENCH_START_TIMING() and
BENCH_END_TIMING(state), accounting for the run time imbalance of different MPI ranks.

static void EllipticSubsurfaceDiffusion3D(benchmark::State &state) {

const int level = 4; // Discretization level
EllipticPDESolver pdeSolver (); // Creates default solver
auto pdeProblem = EllipticPDEProblemBuilder ("Cube") // Defines problem on unit cube
.WithDirichletBoundary ([](const Point &x) { return (x[1] == 0); }) // Defines Dirichlet boundary
.WithNeumannBoundary ([] (const Point &x){ return (x[1] == 1); }) // Defines Neumann boundary
.WithPermeability ([](const Point &x) { return Permeability(x); }) // Confer repository for def.
.WithSolution ([](const Point &x) { return 0.0; }) // Solution on Dirichlet boundary
.WithFlux ([](const Point &x) { return {0.0, -1.0, 0.0}; }) // Fluz on Neumann boundary
.WithLoad ([]J](const Point &x) { return 0.0; }) // Definition of right-hand-side
.WithName ("EllipticSubsurfaceDiffusion3D") // Name of problem
.BuildShared (); // Creates problem shared pointer
for (auto _ : state) { // Multiple benchmark runs
BENCH_START_TIMING () ; // Starts timing for benchmark
benchmark::DoNotOptimize (pdeSolver.Run(pdeProblem, level)); // Solwes the problem on level
BENCH_END_TIMING (state); // Ends timing for benchmark
}
¥

Listing 2: Mockup implementation of a 3D elliptic subsurface diffusion benchmark in M++

3.2 An Acoustic Wave Propagation Benchmark in 2D

The PDE for the second benchmark example is an acoustic wave equation where we search a pressure and
velocity component (p,v): [0,T] x D — R x R? on a unit square D = (0, 1)? and with end time T = 1, such
that we satisfy

Ov(t,x) — Vp(t,x) = f(t,x) on (0,T] x D
op(t,x) —div (v(t,x)) = g¢g(t,x) on (0,T] x D
n-v(t,x) = 0 on (0,T] x 0D
v(0,x) = 0 on D
p(0,x) = 0 on D

with homogeneous boundary and initial conditions. The right-hand side is given by a constant f = 0 and a
separated ¢(t,x) = g1(t) g2(x). Here, g1(t) is a Ricker wavelet,

g1(t) =10 (1 — (%)2) exp (72‘;—22) with a= {5, te][0,1].

while go(x) is a nascent delta function centered at ¢ = (0.5,0.75)" and with a diameter of w = 0.1. The
nascent delta is multiplied with g, such that [|g2 ||, (py = 1, thereby it is given by

o\ —1
gs € —(1—(|x= ) , lx—clly <w
o= Jmee (= (=) ) el .
0, [x—clly >w

A similar example is also used in [4, 5] where this wave propagates through randomly distributed material. As
a result, this benchmark ensures the reproducibility of these studies and scaling results.

For an illustration of the pressure component p and its temporal development, we refer to Figure 2, for the
implemented benchmark to Listing 3. Here, a DG discretization of degree two is used in combination with an
implicit midpoint rule. The linear system in each time step is solved with a GMRES solver preconditioned by
a point-block Jacobi iteration by default. The relation between the mesh width h and the time-step size 7 is
chosen as 7 = Copr,h with Copr, = 0.25.




Figure 2: Pressure component p at different time steps

static void AcousticGaussHatAndRicker2D (benchmark::State &state) {

const int level = 7; // Discretization level

auto pdeSolver = AcousticPDESolver (PDESolverConfig() // Creates PDE solver with implicif
.WithRkOrder (-2).WithDegree (2)); // midpoint rule and DG degree two

const double startTime = 0.0 // Start time of problem

const double gaussWidth = 0.1; // Width of GaussHat

[

const double rickerDuration 0.1; // Duration of Ricker wavelet
const Point shotLocation = {0.5, 0.75}; // Location of shot
auto pdeProblem = AcousticPDEProblemBuilder ("Square") // Defines problem on unit square
.WithForce ([&] (double t, const Point &x, COMPONENT comp) { // Mockup for force term
if (comp != COMPONENT::PO) { return 0.0; } // Homo. welocity right-hand-side
return 10.0 * Ricker(t - startTime, rickerDuration) // Defines right-hand-side for
* GaussHat (dist(x, shotLocation), gaussWidth); // Preassure component
b
.WithName ("GaussHatAndRicker2D") // Name of problem
.WithEndTime (1.0) // Defines end time of problem
.WithCFL (0.25) // Defines CFL number of problem
.BuildShared (); // Creates problem shared pointer
for (auto _ state) { // Multiple benchmark runs
BENCH_START_TIMING () ; // Starts timing for benchmark
benchmark::DoNotOptimize (pdeSolver.Run(pdeProblem, level)); // Solves the problem on level
BENCH_END_TIMING (state); // Ends timing for benchmark
}
}

Listing 3: Mockup implementation of a 2D acoustic wave propagation benchmark in M++

4 Evaluation and Conclusion

The final evaluation of the benchmarking results, e.g. of the examples presented in Section 3, is part of the
automated workflow as outlined in Section 2 and includes three levels. The first two levels are executed
on a weekly basis, and prior to each release of M++. This includes over 60 benchmarks testing critical
functionalities (like Krylov subspace methods or mesh generation) running on a single node using 64 CPUs
for up to 3 hours in total. The results are evaluated using Python tools that generate historical performance
plots for comparison, such that any performance change is noticeable in the deviations of these plots.

These functionality benchmarks are accompanied by larger integration benchmarks, based on applications
from prior work [8, 10, 4, 20], and cover complete 2D and 3D simulations finishing within 10 minutes each
and requiring up to 128 GB of memory. Previously observed performance is then imposed with some tolerance
to the slurm job scheduler, such that if a job exceeds its limits, it is terminated and marked as failed.

The last level is only executed on demand. This includes all job scripts used in [11, 5, 6, 7] which are stored
in the Git repository for reproducibility. Although these large-scale HPC experiments—using up to 16,384 CPUs
over 12 hours—are not run regularly due to their cost, they remain executable via a simple pipeline trigger.
We refer to the pipeline configurations for a detailed overview of which job has which CPU-time and memory
requirements in order to pass!.

We view software development, maintenance, documentation, and performance analysis as integral to
the scientific method, enhancing research robustness and credibility. This paper outlines our approach to

Ihttps://gitlab.kit.edu/kit/mpp/mpp/



sustainable research software development, focusing on new benchmarking capabilities and automation. We
present two simple benchmarking examples to highlight the workflow's flexibility and ease. With this framework
we support future software development, ensuring result reproducibility and code reliability.
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