
cellular_raza - Novel Flexibility in Design of Agent-Based Models
in Cellular Systems∗

Jonas Pleyer , Christian Fleck

Freiburg Center for Data Analysis, Modeling and AI
University of Freiburg

21.11.2024

Abstract

This paper uses cellular_raza to develop a model with cell-type specific interactions whereby cells
self-assemble into regions of similar species which is also known as cell-sorting. We use this model to
asses the parallelization performance of the numerical backend at the core of cellular_raza and show
that values of up to p = 97.78 ± 0.14% parallelizable code can be achieved, which indicates a high level
of parallelizability.

1 Introduction
cellular_raza is a cellular agent-based modeling framework [1] which allows researchers to construct models
from a clean slate. In contrast to other agent-based modelling toolkits, it is free of assumptions about the
underlying cellular representation. This enables researchers to build up complex models while retaining full
control over every parameter and behaviour introduced.
At the 9th bwHPC Symposium 2023, we presented a very compacted variety of applications and analytics of
cellular_raza [2]. Here, we focus on the cell-sorting example which was also presented but has been refined
since then. We refer the interested reader to the documentation website cellular-raza.com where one can find
the full documentation, remaining examples and information about the underlying assumptions and methods
which we leveraged in the development of cellular_raza.

2 Cell Sorting
Cell Sorting is a naturally occuring phenomenon which drives many biological processes [3, 4]. While the
biological reality can be quite complex, it is rather simple to describe such a system in its most basic form.
The underlying principle is that interactions between cells are specific with respect to their type.

Mathematical Description We assume that our cells are spherical objects which interact via force potentials.
The values Ri, Rj are the radii of the cells (i ̸= j) interacting with each other. For simplification, we can
assume that they are identical Ri = Rj = R. The two positions of cells are xi, xj and their distance is
ri,j = ||xi − xj ||. Furthermore, we assume that the equation of motion is given by

∂2
t x⃗i = F⃗i − λ∂tx⃗i (1)

where the first term is the usual force term F⃗i = −
∑

j ∇⃗Vi,j obtained by differentiating the given potential
and the second term is a damping term which arises due to the cells being immersed inside a viscuous fluid.

∗Proceedings of the 9th bwHPC-Symposium 2023. Mannheim Conference Series (MaConf). 2025. [CC BY 4.0]

19

https://orcid.org/0009-0001-0613-7978
https://cellular-raza.com

Parameter Symbol Value
Cell Radius Ri 6 µm
Potential Strength V0 2 µm2/min2

Damping Constant λ 2 min−1

Interaction Range ξ 1.5(Ri + Rj) = 3Ri

Time Stepsize ∆t 0.2 min
Time Steps Nt 10′000
Domain Size L 110 µm
Cells Species 1 NC,1 800
Cells Species 2 NC,2 800

Table 1: This table shows two sections containing parameters and other variables respectively which to fully
specify and initialize the system. In total, 1600 cells with random initial positions and zero velocity were placed
inside the domain.

Note that we rescaled the units of our parameters in order to normalize our mass to m = 1. This means,
every parameter can be expressed in units of length and time.
We can assume that interactions between cells are restricted to close ranges and thus enforce a cutoff ξ ≥
Ri + Rj for the interaction where the resulting force is identical to zero. We further assume that cells of
different species do not attract each other but do repel. To describe this behaviour, we set the potential to
zero when r > Ri + Rj (i.e., κi,j > 1) and both cells have distinct species type si.

κi,j = ri,j

Ri + Rj
(2)

Ui,j = V0

(
1

3κ3
i,j

− 1
κi,j

)
(3)

Vi,j =


0 if κi,j ≥ ξ/(Ri + Rj)
0 if si ̸= sj and κi,j ≥ 1
U(κi,j) else

. (4)

Parameters In total, we are left with only 4 cellular parameters to describe our system. In order to fully
specify the system, we also need to define the time for which we are solving, the overall physical size and the
initial number of agents which we put into the simulation. Their values are given in Table 1.

Results Figure 1 shows the inital placement of the cells and their final state. We can clearly see that the
cells have assembled into connected regions of the same species. The size of these regions depends on the
interaction range and its strength. In this example, we did not assume any stochastic motion of the cells. It
is to be noted that this assumption is not required by cellular_raza but rather a free choice of the model.
Depending on the desired complexity, users can substantially modify the cellular representation, which is the
main reason for the development of cellular_raza. We provide two additional examples which implement
mechanics with Brownian [5] and Langevin [5, 6] dynamics but even more complex cellular representations are
possible as well (see eg. bacterial-rods).

3 Multithreading Performance (Amdahl’s Law)
Theory One measure of multithreaded performance is to calculate the possible theoretical speedup given by
Amdahl’s law [7]. It provides an estimate for the speedup and assumes that the workload can be split into
a parallelizable and non-parallelizable part which is quantified by 0 ≤ p ≤ 1. A higher value means that the
contribution coming from non-parallelizable algorithms is lower. The theoretical maximum p = 1 means that
all of the executed code is parallelizable. Amdahl’s law is given by

20

https://github.com/jonaspleyer/cellular_raza/tree/master/cellular_raza-examples/cell_sorting
https://cellular-raza.com/showcase/bacterial-rods

Figure 1: Cells are initially placed randomly inside the cuboid simulation domain. After the simulation has
finished, the cells have assembled into connected regions of the same species.

T (n) = T0
1

(1 − p) + p
n

(5)

where T (n) describes the throughput which can be achieved given n parallel threads and the variable p is the
relative proportion of execution time which benefits from parallelization. The total latency of a program can
be determined via the inverse of the throughput.

Simulation Setup Measuring the performance of any simulation will be highly dependent on the specific
cellular properties and complexity. For this comparison, we chose the previously explained cell-sorting example
which contains minimal complexity compared to other examples (see cellular-raza.com/showcase). Any com-
putational overhead which is intrinsic to cellular_raza and not related to the chosen example would thus
be more likely to manifest itself in performance results.
In order to produce reproducible results and simplify this overall process, we provide the cellular_raza-
benchmarks crate. It is a command-line utility which can be used to run benchmarks with various con-
figurations. Its arguments are displayed in Listing 1.

21

https://cellular-raza.com/showcase
https://github.com/jonaspleyer/cellular_raza/tree/master/cellular_raza-benchmarks
https://github.com/jonaspleyer/cellular_raza/tree/master/cellular_raza-benchmarks

CPU Fixed Clockspeed Memory Frequency TDP
AMD Ryzen 3700X [8] 2200 MHz 3200 MT/s 65 W
AMD Ryzen Threadripper 3960X [8] 2000 MHz 3200 MT/s 280 W
Intel Core i7-12700H [9] 2000 MHz 4800 MT/s 45 W

Table 2: List of tested hardware configurations.

cd cellular_raza - benchmarks
cargo run -- -h
cellular_raza benchmarks

Usage : cell_sorting [OPTIONS] <NAME > [COMMAND]

Commands :
threads Thread scaling benchmark
sim -size Simulation Size scaling benchmark
help Print this message or the help of the given subcommand (s)

Arguments :
<NAME > Name of the current runs such as name of the device to be benchmarked

Options :
-o, --output - directory <OUTPUT_DIRECTORY >

Output directory of benchmark results [default : benchmark_results]
-s, --sample -size <SAMPLE_SIZE >

Number of samples to be generated for each measurement [default : 5]
--no -save

Do not save results . This takes priority against the overwrite settings
--overwrite

Overwrite existing results
--no - output

Disables output
-h, --help

Print help
-V, --version

Print version

Listing 1: Usage of the benchmark CLI tool. We provide two benchmarks, one for increasing the number of
agents and another for increasing the number of threads. The subcommands can be further customized and
will automatically run the given simulation multiple times for the specified configurations.

Results generated in this way are stored inside the benchmark_results folder. In addition, we provide a
python script plotting/cell_sorting.py to quickly visualize the obtained results.

Hardware This benchmark was run on three distinct hardware configurations. There exists a wide range of
variables which could influence our measured runtime results. However, we expect that the biggest effects are
due to power-limits and variable frequency of the central processing unit (CPU) (see Figure 2). Both of these
effects can be circumvented by choosing an artificially fixed frequency which is low enough such that the total
power limit of the CPU is never reached even when multiple cores are under load. While it is well known
that other aspects such as cache-size and memory latency can have an impact on absolute performance, they
should however not introduce any significant deviations in terms of relative performance scaling.

Results In figure 2, we fit Amdahl’s law of equation 5 to our measured datapoints and obtain the parameter
p from which the theoretical maximal speedup S can be calculated via

lim
n→∞

T (n) = S = 1
1 − p

(6)

The values for the maximum theoretical speedup are S3700X = 13.64 ± 1.73, S3960X = 44.99 ± 2.80 and
S12700H = 34.74 ± 5.05. Their uncertainty σ(S) can be calculated via the standard gaussian propagation

22

Figure 2: Performance of the throughput T (n) for increasing number of utilized threads n.

σ(S) = σ(p)
(1 − p)2 (7)

where σ(p) is the uncertainty of the parameter p obtained via the fit in figure 2.

Discussion The perfect score of a fully parallelizable system with p = 1 is considered almost unobtainable
in a real-world scenario due to effects such as the workload of the underlying operating system and physical
constraints. Our results showed that the measured value p does also depend on the respective hardware.
In addition to hardware-related effects, we also expect a portion of 1 − p of our simulation code to be
fundamentally not parallelizable. This fraction can be made up of the initial setup of the simulation which
necessarily has to start single-threaded and can only extend to multiple workers once all respective subdomains
are generated. Furthermore, ending the simulation not only frees resources which requires computation but
also locks the main routine until every individual thread has finished. Even more importantly, all threads are
currently using a shared barrier [10] to sync with each other which means that even a single worker can block
all others. This limitation could be fixed in the future with improved versions cellular_raza and is only an
implementation detail and not a fundamental drawback.
However, the total speedup S is still very good for all configurations which can be directly attributed to a
good implementation and the core assumption of cellular_raza that all interactions are strictly local and
subdomains are only interacting along their borders without the need to construct long-ranging synchronization
algorithms.

4 Conclusions
We showed along the example of cell-sorting how cellular_raza can be used to model cellular biological
systems. The modeling process is flexible due to the variety of cellular representations which are supported. We
chose to represent our cells with only 4 parameters, which specify the physical representation and interaction

23

https://cellular-raza.com/docs/cellular_raza_core/backend/chili/struct.SubDomainBox.html
https://cellular-raza.com/docs/cellular_raza_concepts/trait.Domain.html
https://cellular-raza.com/guides/introduction/#local-rules

of the cells. The numerical results showed the expected behaviour of cells assembling into connected regions
of identical species.
Utilizing the cell-sorting simulation, we benchmarked the performance of the numerical backend. We picked a
simulation which is large enough to fully saturate all processors and gradually increased the number of threads
utilized. The fractional amount of parallelizable code was determined by fitting the values of runtime to
Amdahl’s law. It reached values up to p = 97.78% for a workstation setup which indicates a well-parallelizable
implementation.

5 Acknowledgements
The author(s) declare that financial support was received for the research, authorship, and/or publication of
this article. JP and CF received funding from FET-Open research and innovation actions grant under the
European Union’s Horizon 2020 (CyGenTiG; grant agreement 801041).

References
[1] J. Pleyer and C. Fleck, “Agent-based models in cellular systems,” Frontiers in Physics, vol. 10, Jan.

2023. [Online]. Available: http://dx.doi.org/10.3389/fphy.2022.968409

[2] Jonas Pleyer. (2023) bwhpc symposium 2023. [Online]. Available: https://jonaspleyer.github.io/
peace-of-posters/showcase/2023-10-23-bwhpc-symposium/

[3] M. S. Steinberg, “Reconstruction of tissues by dissociated cells: Some morphogenetic tissue movements
and the sorting out of embryonic cells may have a common explanation.” Science, vol. 141, no. 3579, p.
401–408, Aug. 1963. [Online]. Available: http://dx.doi.org/10.1126/science.141.3579.401

[4] F. Graner and J. A. Glazier, “Simulation of biological cell sorting using a two-dimensional extended
potts model,” Physical Review Letters, vol. 69, no. 13, p. 2013–2016, Sep. 1992. [Online]. Available:
http://dx.doi.org/10.1103/physrevlett.69.2013

[5] T. Schlick, Molecular Modeling and Simulation. Springer New York, 2002. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-22464-0

[6] R. W. Pastor, Techniques and Applications of Langevin Dynamics Simulations. Springer Netherlands,
1994, p. 85–138. [Online]. Available: http://dx.doi.org/10.1007/978-94-011-1168-3_5

[7] D. P. Rodgers, “Improvements in multiprocessor system design,” ACM SIGARCH Computer
Architecture News, vol. 13, no. 3, p. 225–231, Jun. 1985. [Online]. Available: http:
//dx.doi.org/10.1145/327070.327215

[8] AMD Ryzen™ 7 3700X. (2024) Amd product specifications. [Online]. Available: https:
//www.amd.com/en/products/specifications.html

[9] Intel Corporation. (2024) Intel i7 12700h. [Online]. Available: https://ark.intel.com/content/www/us/
en/ark/products/132228/intel-core-i7-12700h-processor-24m-cache-up-to-4-70-ghz.html

[10] Jon Gjengset, “Hurdles.” [Online]. Available: https://crates.io/crates/hurdles

24

http://dx.doi.org/10.3389/fphy.2022.968409
https://jonaspleyer.github.io/peace-of-posters/showcase/2023-10-23-bwhpc-symposium/
https://jonaspleyer.github.io/peace-of-posters/showcase/2023-10-23-bwhpc-symposium/
http://dx.doi.org/10.1126/science.141.3579.401
http://dx.doi.org/10.1103/physrevlett.69.2013
http://dx.doi.org/10.1007/978-0-387-22464-0
http://dx.doi.org/10.1007/978-94-011-1168-3_5
http://dx.doi.org/10.1145/327070.327215
http://dx.doi.org/10.1145/327070.327215
https://www.amd.com/en/products/specifications.html
https://www.amd.com/en/products/specifications.html
https://ark.intel.com/content/www/us/en/ark/products/132228/intel-core-i7-12700h-processor-24m-cache-up-to-4-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/132228/intel-core-i7-12700h-processor-24m-cache-up-to-4-70-ghz.html
https://crates.io/crates/hurdles

	Introduction
	Cell Sorting
	Multithreading Performance (Amdahl's Law)
	Conclusions
	Acknowledgements

