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Abstract

For several years, we have been dynamically and opportunistically integrating the computing resources
of the HPC cluster NEMO into the HTC cluster ATLAS-BFG using the COBalD/TARDIS software. To
increase usage efficiency, we allow the integrated resources to be shared between the various High Energy
Physics (HEP) research groups in Freiburg. However, resource sharing also requires accounting. This
is done with AUDITOR (AccoUnting Datahandllng Toolbox for Opportunistic Resources), a flexible and
extensible accounting ecosystem that can cover a wide range of use cases and infrastructures. Accounting
data is recorded via so-called collectors and stored in a database. So-called plugins can access the data
and take measures based on the accounted data. In this work, we present how NEMO resources can be
fairly shared among contributing working groups when integrated into ATLAS-BFG using AUDITOR.

1 Introduction

High Energy Physics (HEP) studies fundamental particles and their interactions with the primary goal of
discovering new elementary particles and precisely measuring the properties of existing ones. To achieve these
goals, particles are accelerated to high energies and are brought to collision at the Large Hadron Collider
(LHC) [1], the largest and most powerful particle accelerator in the world, located at CERN. It can collide
protons up to 40 million times per second. The ATLAS detector [2], a general-purpose detector, records particle
collisions at a rate of up to 3000 collisions per second, generating approximately 10 PB of data annually. This
data is then analyzed by physicists around the world to gain more insight into the fundamental laws of nature.

After data acquisition, the recorded collision events undergo several phases of analysis. First, events are
reconstructed to identify particles and to measure their properties. Subsequent steps filter out irrelevant events
and aggregate low-level detector measurements into high-level physics observables. This analysis process starts
on the Worldwide LHC Computing Grid (WLCG) [3], a global network of computing resources, and ends on
local university clusters for final evaluation. To understand the complex processes that occur during particle
collisions, the data analysis is supported by extensive simulations performed on the WLCG. In Freiburg, two
compute clusters are available for HEP data analysis: ATLAS-BFG and NEMO.

ATLAS-BFG, a High Throughput Computing (HTC) cluster, is equipped with 3400 CPU cores and offers
4PB of object storage. It is integrated into the WLCG and provides a specialized environment tailored for
ATLAS data analysis. Job scheduling is facilitated by the Slurm [4] scheduler. The cluster is used to execute
ATLAS simulation and event reconstruction tasks, as well as analysis jobs originating from local researchers.

NEMCﬂ a High Performance Computing (HPC) cluster, is part of the bwHPC initiative serving the broader
scientific community in Baden-Wiirttemberg. Designed to support multiple scientific fields, NEMO is equipped
with 18000 CPU cores and 800 TB of parallel storage. Computing resources on NEMO are allocated via a
batch system managed by the Moab [5] scheduler, adhering to a single-user node policy, where each node is
only accessible to one user at a time. This cluster can be used by local researchers for their user analysis jobs.
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Figure 1: Integrating resources from the NEMO cluster (based on the Moab scheduler) into the ATLAS-BFG
cluster (using the Slurm scheduler). NEMO acts as the underlying batch system (UBS) that provides resources
for the overlay batch system (OBS), ATLAS-BFG. The resources are provided in the form of virtual machines
(VMs) that appear as virtual nodes (vNodes) in the OBS. COBalD/TARDIS monitors the utilization of the
vNodes and dynamically increases/decreases the number of VMs.

Since 2019, we have been dynamically and opportunistically integrating the computing resources of NEMO
into ATLAS-BFG using the software tools COBalD [6] and TARDIS [7]. The COBalD/TARDIS system allows
the orchestration of virtual machines (VMs) in one batch system, allowing them to be utilized as opportunistic
resources in another batch system. The first batch system serves as an underlying batch system (UBS), while
the second is classified as an overlay batch system (OBS). In our case, as shown in Figure [1, NEMO acts
as the UBS and ATLAS-BFG acts as the OBS. When a new VM starts on NEMO, it connects as a virtual
node (vNode) to the batch system managed by Slurm on ATLAS-BFG. COBalD/TARDIS monitors the CPU
and memory usage of these vNodes and queues new VMs on NEMO when a predefined upper threshold for
resource usage is reached. Furthermore, when no new VMs are required, idle VMs can be shut down, freeing
up the previously allocated resources.

In Freiburg, four different HEP groups have a share in NEMO and are therefore allowed to use the cluster.
Each group is allocated its own group fair share, which is shared among the group members. The fair share is
a resource allocation policy that is utilised in computing environments, particularly in job schedulers such as
Slurm, PBS and HT Condor, with the objective of ensuring the equitable distribution of computing resources.
We operate a COBalD/TARDIS instance for each HEP group, which uses the corresponding group fair share
in NEMO. On ATLAS-BFG, there is a Slurm queue for each group, to which users of that group can submit
compute jobs. To efficiently utilize the opportunistic resources, we allow jobs from one group to be executed
on a VM that was started by another group. This effectively unifies and distributes each group's fair share
among the four HEP groups. Figure[2]shows an example of this setup with two groups.

Due to several factors, the amount of resources provided by each group may differ. For instance, users
can still directly connect to NEMO and submit jobs there, which reduces the corresponding group fair share
on NEMO. This can result in unfair situations, where one group provides fewer resources on NEMO but uses
a larger portion of the integrated resources on ATLAS-BFG than the other groups. To restore fairness, the
job priority for the groups on ATLAS-BFG should match the amount of resources provided on NEMO. This
means that jobs from a group that provides more resources will be scheduled with a higher priority than jobs
from the other groups. The AUDITOR [8] ecosystem, which will be introduced in the next section, can be
used to achieve this.
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Figure 2: Example of two HEP groups A (blue) and B (orange) sharing resources on NEMO. Both groups
have a share on NEMO and use COBalD/TARDIS to start VMs on NEMO. On the ATLAS-BFG cluster, users
from both groups submit their jobs to separate queues. Because the VMs are set up to be shared between
groups, jobs from users in group A can be assigned to a VM started by group B, and vice versa.

2 The AUDITOR accounting ecosystem

The AUDITOR ecosystem comprises three types of components, as shown in Figure 3] The core component
stores records in a PostgreSQL [9] database. Collectors gather data and send it as records to the core
component, while plugins perform specific actions based on the stored information. Both collectors and
plugins interact with the core component through a REST API. To enable the extension of the AUDITOR
ecosystem, client libraries that abstract the REST API are available for both the Rust [I0] and Python [1I]
programming languages. The Python client library is a lightweight Python layer built on top of the Rust client
library.

2.1 The AUDITOR core component

The core component of AUDITOR is written in the Rust programming language and stores all data in a
PostgreSQL database. It is designed to be stateless, making it more resilient against data loss and suitable
for high-availability setups with multiple instances distributed behind a load balancer. The core component is
available as an RPM package and a Docker container for easy installation.

2.2 Collectors

The collectors are responsible for gathering relevant accounting data from various sources and transmitting it
to the core component in the form of records. Four different collectors are available: the TARDIS Collector,
the Slurm Collector, the Slurm Epilog Collector, and the HT Condor Collector.

As stated in the introduction, COBalD/TARDIS manages VMs in an UBS. These VMs are referred to
as drones in the context of COBalD/TARDIS. Each drone can be in one of several states, such as booting,
running, or stopped. TARDIS tracks transitions between these states and forwards each transition event to
a plugin interface. The TARDIS Collector connects to this plugin interface. Because only state changes are
transmitted, a complete record can only be created after the drone has been terminated. To avoid the collector
having to track each drone from creation to termination, the TARDIS Collector first sends an incomplete record
of a drone to the core component and updates the record later with the stop time of the drone once the drone
is terminated. This simplifies the collector but increases the number of interactions with AUDITOR, as each
record requires creation and updating. The collector is distributed with the TARDIS [7] software.

The Slurm Collector and Slurm Epilog Collector can be used to collect accounting information from a Slurm
batch system. The Slurm Epilog Collector utilizes the epilog functionality of the Slurm scheduler to execute
scripts at the end of each batch job. It collects job information using the Slurm command line interface (CLI)
and sends it to the core component. However, its usage may affect job runtime due to processing delays.
Additionally, the information available from Slurm at the time of the epilog may be limited and may not cover
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Figure 3: Overview of the AUDITOR ecosystem. AUDITOR accepts records from collectors and stores them
in a PostgreSQL database. It grants access to these records to the plugins, which perform actions based on
the stored information.

all use cases. To address these issues, the Slurm Collector operates independently and periodically queries the
Slurm accounting database using the Slurm CLI. The records are then transmitted to the core component at
regular, configurable time intervals. Both collectors are compiled into portable, statically linked binary files
with no system dependencies. They are highly configurable and require only the installation of the Slurm client
software.

The HT Condor Collector provides functionality similar to that of the Slurm Collector but for the HT Con-
dor [I2] scheduler. It queries accountable data from HTCondor using the HTCondor CLI. The key difference
between the HT Condor Collector and the Slurm Collector is that the former is written in Python and therefore
requires a compatible Python distribution on the host where it is running.

The Kubernetes collector gets its info from two places: the Kubernetes APl and a Prometheus instance.
This is a necessary process since Kubernetes does not provide its resource metrics, such as CPU time, via its
API. Consequently, the collector must possess the capability to access both the APl and Prometheus.

2.3 Plugins

Plugins can perform various tasks based on the information stored as records in the AUDITOR database.
When two clusters are connected via COBalD/TARDIS, the Priority Plugin can adjust the group priority in
the OBS based on the resources provided in the UBS. The APEL Accounting Plugin forwards the accounting
information gathered in AUDITOR to the EGI APEL accounting platform [13]. Another potential use case is
a utilization reporting tool that analyzes requested versus the consumed resources per user job and provides
a weekly overview of potential savings and corresponding CO, footprint to raise user awareness. Please note
that the last plugin is not yet available at the time of writing. The following section presents the priority plugin
in detail.

3 Fair sharing of resources between clusters

As described in the introduction, resources from the NEMO cluster are opportunistically integrated into the
ATLAS-BFG cluster using COBalD/TARDIS and shared among the four HEP groups. To ensure fair allocation
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of resources among the these groups, the job priority for the groups on ATLAS-BFG should correspond to the
amount of resources provided on NEMO. This can be achieved using a combination of the TARDIS Collector,
AUDITOR, and the priority plugin. The TARDIS Collector gathers accounting data from COBalD/TARDIS
and stores it in the AUDITOR database. The Priority Plugin calculates the priority for each group based on
the resources allocated on NEMO by COBalD/TARDIS and adjusts the priority in the Slurm scheduler on
ATLAS-BFG accordingly.

To calculate the priority, the plugin first computes the resources provided by each group i € [A,..., D] in
vCore hours during the previous 14 days, denoted as ¢;(¢):

- /t N(t) dt. (1)

now—14d

Here, N;(t) represents the number of vCores that group i provided at time ¢t. The priority p; for group 4
is then defined as the ratio of resources provided by a single group ¢; to the total amount of vCore hours by
all HEP groups. The fraction is then scaled to the range between the minimum and maximum priority values,
Pmin and Pmax:

C;
Pi= =" (pm x pmin) + Pmin - (2)
Zj Cj ’

The group priorities p; are adjusted hourly on the OBS, which in this case is the Slurm scheduler. The
minimum and maximum priority values for Slurm have been chosen as pmin = 1 and pmax = 2% — 1 = 65535,
respectively.

Figures [4] and [5] show the integrated vCore hours calculated according to Eq. [I] and the updated group
priorities determined using Eq. [2] respectively. It is evident that Group A provides fewer resources than the
other groups, which is reflected in their lower priority. As a result, members of Group A experience significantly
longer waiting times for job submissions.

The Priority Plugin makes the data from Figures |4 and [5| available through a Prometheus [14] exporter.
When connected to a Grafana [I5] instance, the data can be visualized in real time.
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Figure 4: Integral over the vCore hours ¢;(t) of the previous 14 days per group ¢ according to Eq. [1| recorded
on the NEMO cluster in the period August - Oktober 2023.
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Figure 5: Calculated priority p;(t) per group i using Eq. [2| based on resources used on NEMO.

29



4 Conclusions

AUDITOR is a modular accounting ecosystem designed with flexibility in mind. Its REST interface and client
libraries in Rust and Python enable a broad community of users to contribute to the expansion of the ecosystem
and to implement their own collectors and plugins quickly and easily. The existing collectors and plugins can
be combined in various ways to implement different use cases.

Resources of the NEMO cluster have been integrated into the ATLAS-BFG cluster using COBalD/TARDIS
in Freiburg for several years. To ensure fair resource sharing among the four HEP groups in Freiburg, AU-
DITOR, together with the TARDIS Collector and the Priority Plugin, is utilized to adjust the job priority on
ATLAS-BFG based on the resources provided on NEMO.

5 Acknowledgements

This work was supported by the Federal Ministry of Education and Research (BMBF) within the project
05H21VFRC2 "Entwicklung, Integration und Optimierung von digitalen Infrastrukturen fiir ErUM" in the con-
text of the collaborative research centre “Foderierte Digitale Infrastrukturen fir die Erforschung von Universum
und Materie (FIDIUM)".

The HPC-cluster NEMO in Freiburg is supported by the Ministry of Science, Research and the Arts Baden-
Wiirttemberg through the bwHPC grant and by the German Research Foundation (DFG) through grant no
INST 39/963-1 FUGG.

References

[1] L. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001

[2] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, |JINST 3 (2008)
S08003

[3] I. Bird, K. Bos, N. Brook, et al., LHC computing Grid: Technical design report, CERN-LHCC-2005-024

[4] A. Yoo, M. Jette and M. Grondona, SLURM: Simple Linux Utility for Resource Management, Job Schedul-
ing Strategies For Parallel Processing, 44-60 (2003)

[5] Adaptive Computing, Inc., Introduction to Cloud for HPC., White Paper (2011)

[6] M. Fischer, E. Kuehn, M. Giffels, et al., Lightweight dynamic integration of opportunistic resources, EPJ
Web of Conferences 245, 07040 (2020)

[7] M. Fischer, M. Giffels, A. Haas, et al., Effective Dynamic Integration and Utilization of Heterogenous
Compute Resources, EPJ Web of Conferences 245, 07038 (2020)

[8] Boehler, M., von Cube, R., Fischer, M., et al., AUDITOR: Accounting data handling toolbox for oppor-
tunistic resources. The European Physical Journal C. 85 (2025,3)

[9] PostgreSQL Global Development Group, PostgreSQL, |https://www.postgresql.org, accessed 8th February
2024

[10] N. Matsakis and F. Klock, The Rust language, ACM SIGAda Ada Letters 34, 103-104 (2014)
[11] G. Van Rossum and F. Drake, Python 3 Reference Manual, CreateSpace (2009)

[12] D. Thain, T. Tannenbaum and M. Livny, Distributed computing in practice: the Condor experience.,
Concurrency and Computation: Practice and Experience 17, 323-356 (2005)

[13] M. Jiang, C. Del Cano Novales, G. Mathieu, J. Casson, et al., An APEL Tool Based CPU Usage Ac-
counting Infrastructure for Large Scale Computing Grids, |Data Driven e-Science, 175-186, Springer (2011)

[14] B. Rabenstein and J. Volz, Prometheus: A Next-Generation Monitoring System (Talk), USENIX Associ-
ation, 2015

[15] Grafana Labs, Grafana, https://grafana.com, accessed 9th February 2024

30


https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://cds.cern.ch/record/840543
https://doi.org/10.1051/epjconf/202024507040
https://doi.org/10.1051/epjconf/202024507040
https://doi.org/10.1051/epjconf/202024507038
https://www.postgresql.org
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1007/978-1-4419-8014-4_14
https://grafana.com

	Introduction
	The AUDITOR accounting ecosystem
	The AUDITOR core component
	Collectors
	Plugins

	Fair sharing of resources between clusters
	Conclusions
	Acknowledgements

